Adaptive discretization of convex multistage stochastic programs

نویسندگان

  • Stefan Vigerske
  • Ivo Nowak
چکیده

min x FI(x,ξ) := ∑ i∈I pi f (xi,ξi) s.t. gt(n)(x 1, . . . ,xn,ζn) ≤ 0, xn ∈ Xt(n), n ∈ N(I) f (x,ξ), gt(x,ξ) convex in x, Xt convex, t = 1, . . . ,T Notation ξi i ∈ I scenarios of stoch. process ξ ξn := ξi,t(n) ζn := (ξ1, . . . ,ξn) xi i ∈ I decision vector for scenario i xn := xi,t(n) pi i ∈ I scenario probabilities N(I) nodes of scenario tree defined by scenarios in I t(n) timestage of node n T number of timestages

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Working Paper on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs on Augmented Lagrangian Decomposition Methods for Multistage Stochastic Programs

A general decomposition framework for large convex optimization problems based on augmented Lagrangians is described. The approach is then applied to multistage stochastic programming problems in two di erent ways: by decomposing the problem into scenarios and by decomposing it into nodes corresponding to stages. Theoretical convergence properties of the two approaches are derived and a computa...

متن کامل

On the Convergence of Decomposition Methods for Multistage Stochastic Convex Programs

We prove the almost-sure convergence of a class of samplingbased nested decomposition algorithms for multistage stochastic convex programs in which the stage costs are general convex functions of the decisions, and uncertainty is modelled by a scenario tree. As special cases, our results imply the almost-sure convergence of SDDP, CUPPS and DOASA when applied to problems with general convex cost...

متن کامل

On regularization with normal solutions in decomposition methods for multistage stochastic programming

We consider well-known decomposition techniques for multistage stochastic programming and a new scheme based on normal solutions for stabilizing calculations as the iteration process progresses. The given algorithms combine ideas from finite perturbation of convex programs and level bundle methods to regularize the so-called forward step of these decomposition methods. In contrast to other regu...

متن کامل

On Stability of Multistage Stochastic Programs

We study quantitative stability of linear multistage stochastic programs under perturbations of the underlying stochastic processes. It is shown that the optimal values behave Lipschitz continuous with respect to an Lp-distance. Therefor, we have to make a crucial regularity assumption on the conditional distributions, that allows to establish continuity of the recourse function with respect to...

متن کامل

Aggregation and discretization in multistage stochastic programming

Multistage stochastic programs have applications in many areas and support policy makers in finding rational decisions that hedge against unforeseen negative events. In order to ensure computational tractability, continuous-state stochastic programs are usually discretized; and frequently, the curse of dimensionality dictates that decision stages must be aggregated. In this article we construct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Meth. of OR

دوره 65  شماره 

صفحات  -

تاریخ انتشار 2007